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ABSTRACT 

The infrared divergences of renormalizable theories with 

coupled massless fields (in particular the Yang-Mills theory) are 

shown to cancel for transition probabilities corresponding to 

finite energy resolution detectors, just as in quantum electro- 

dynamics. This result is established through lowest non-trivial 

order in perturbation theory for the detection of massive muons 

in a QED theory containing massless electrons or the detection of 

massive quarks in a Yang-Mills theory. 
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In quantum electrodynamics, physically sensible transition 

probabilities are infrared finite to all orders ina. It has been 

shown by many peoplel'* beginning with Bloch and Nordsieck that the 

infrared divergences associated with virtual corrections are can- 

celled by corresponding divergences in the emission of undetected 

photons whose total energy is less than the energy resolution AE ,' 
of the detector. A central question'in the study of Yang-Mills 

theories is whether an analog to the Bloch-Nordsleck program can be 

carried out. Our work suggests that this is possible for any re- 

normalisable theory containing coupled massless fields along with 

massive ones. This result should help to sharpen questions about 

the confinement mechanism in gauge theories. In particular, it 

has been speculated that confinement is connected to the existence 

of mass singularities in perturbation theory. However, to lowest 

non-trivial order we have graven that there are no singularities in 

exnerimentally accessible transition nrobabllities. We conjecture that 

this Is true to anv finite order. 
We begin by reviewing some known features of quantum electro- 

dynamics in the limit me+0 since this model contains coupled mass- 

less fields, a feature shared by the Yang-Mills theory. Even with 

me=O, certain transition probabilities remain free of Infrared 

slngularlties394. We then proceed to~the Bloch-Nordsieck problem 

for two different theories involving massive fields in addition to 

coupled massless ones. The first (model 1) is quantum electro- 

dynamics with a massive muon and a masslesselectron. The second 

(model 2) is the Yang-Mills theory with massive quarks coupled to 

the massless gauge fields. It Is useful to study the Abelian 

model first since its infrared structure in perturbation theory is 

similar to the Yang-mills theory and yet it avoids some of the 

non-Abelian complexity. In either theory, the mass renormalization 

of the fermlons is performed on the mass-shell and the resulting 
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renormallzed fermlon mass u is gauge independent. However In any 

theory with coupled massless fields it IS necessary to define the 

coupling constant away from mass-shell to avoid introducing spurious 

infrared singularltles5. For both models, we explicitly analyze 

production by an external local current J,,(x) followed by the de- 

tection of a massive fermion with energy resolution AE. In the 

Abellan model, J,(x)=ii(x)y,u(x), where u(x) Is the muon field and 

the detector triggers on muon number. For the Yang-Mills model, 

J,,(x)=Ec (x)y,g,(x), a group (color) singlet. The ouark detector is - 
ii 

color-blind, triggering on, say, electric charge. 

If the limit me*0 is taken in ordinary electrodynamics, a single 

electron state becomes degenerate in energy with a state consisting 

of an electron and any number of parallel moving photons and electron- 

positron pairs. Summation over these degenerate states Is necessary 

for infrared finiteness.. Consider,for example,the production of 

electrons , positrons and photons by an external current j,,(x)$,(x)y,,Jl,(x). 

Any Feynman diagram contributing to ld4x eiq'X<OIT(j,,(x)jv(0))(O> Is 

finite In this limit since the external momentum provides an infrared 

cutoff% Thus the sum of contributions to the total production cross 

section corresponding to the different cuts of each such diagram 

will be infrared finite in the limit m,+O. Note that a partial cross 

section corresponding to the detection of a single massless electron 

with energy between E and EtAE is impossible to measure and is in 

fact logarithmically divernent7. 

The extension of this result to the Yang-Mills theorv has been 

checked through low orders of perturbation theorvg. The finiteness of 

the total cross section can be shown with massless or massive ouarks 

COUDled to the nluons. However, with massive nuarks, the ouestion of 

the finiteness of a martial cross section with finite enert?v resolution 

quark detectors ( a Rloch-ll 9dsleck result) is less easllv answered. 
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We consider this problem for both models 1 and 2. The compu- 

tation is organized by grouping together the different unitarity cuts 

of each diagram contributing to E,,v(q)=ld4x e iq'x<O(T J,,(x)Jv(O)(O>. 

The phase space integral over the massive fermion is however restricted 

by the detector kinematics. The object to be computed Is the cross 

section for the Inclusive detection of a massive fermlon. We 

normalize by the Born cross section and define the dimensionless 

transition probability R*E(E/M, AE/M, v/M, m/M, g(M)) where E represents 

the energies (center of mass, fermlon energy), AE is the energy resolu- 

tion' , u Is the heavy fermion mass, m represents some infrared cutoff 

and g(M) is the renormalised coupling constant5. In the Abelian model 

the infrared cutoff m is the electron mass. For the Yang-Mills theory, 

the infrared cutoff is best provided by dimensional continuation 10 . 

In the Abelian model R,,,,(q) contains only ordinary quantum 

electrodynamics graphs at the one and two loop levels so that RAE is 

clearly finite. On the three loop level, the same is true of all 

graphs except the two shown in Fig. 1. To show that all the cuts of 

either Fig. la or Fig. lb sum to a finite contribution to RAE, it is 

convenient to use a dispersive representation for the internal photon 

propagator rather than explicitly considering each cut. Apart from a 

seroth order longitudinal piece, the complete photon propagator is 
kk 

$- $3 --g- d(k2), where d(k2) satisfies the dispersion relation 
k +i~ 

1 
2-K 

d(k2/M2, m2/M2, g(M)) = ' d(0 m2/M2 
k2+1E ' 

, g(M)) 

+/- da2 E(X2) 
' k2-A2+ic ' 

(11 

Consider the sum of the cuts of Fig. la with the muon phase space 

restricted by the detector kinematics (AE cuts). Using Eq. 1 

expanded to second order, 
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x np,(la) = at2)(0, m2/M2, g(M)) x m&ti--@--- 
AE cuts 

+ I- dX2 Ih2)(X2) x a 

since the sum of the AE cuts of the two loop graph 1s finite in the region 
6 . 

near 1-O , the possibly infrared divergent part in Eq. 2 1s ProPortiona 

to d(2)(0,m2/M2,g(M))t~,d~211(2)(~2). However, since d(k2/M2, m2/M2, 

g(M)) is renormallzed at k2=-M2, the limit m+O exists In each order. 

Thus from Eq. 1, d(2)(0,m2/M2,g(M))t/,dA211(2)(A2) is finite in the 

limit m+O. Fig. lb can be dealt with slmllarly and therefore 

RAE(E/M, AE/M, u/M, 0, g(M)) exists to this order. In next order 

(4 loops In Eu"(q)), subgraphs appear with four or more external 

photon legs and this dispersive method has to be supplemented. 

The extension to the Yang-Mills theory Is straightforward. The 

first class of three loop graphs to consider are those without gluon 

self couplings or Fadeev-Popov loops. Each of these as well as the 

one and two loop graphs is electrodynamlc-like apart from group theory 

factors. However, since the detector is color blind, the color sum 

can be done In each graph before making the various cuts. Then 

since the sum of the AE cuts of each such graph in electrodynamics 
11 

is finite, the same will be true here . 

The next class contains the graphs with gluon propagator cor- 

rections to the two loup graphs. They can be dealt withy as in the 

Abellan model using a dispersive representation for the gluon propa- 

gator. The sum of the one loop corrections to the gluon propagator 

(gluon loop, Fadeev-Popov ghost loop and tadpole) is proportional 

to-g2(M) ' log -k2/M2. 
2 

This expression can be obtained by dimen- 

slonal continuation and subtraction at k2=-M2. A dispersive repre- 

sentation for the gluon propagator to this or any order can be 

developed by starting with a contour in the complex k2 plane which 
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comes In from +m below the real axis, circles around the origin and 

goes out to +- above the real axis. The radius 6. of the small circle 

around the origin plays the role of the electron mass in the Abelian 

model and the contribution from the small circle takes the form of the 

first term in Eq. 1. The sum of this piece and the other is finite 

as ~-CO and the analysis of E,,,, (q) then goes as in the Abelian case. 

There remain the two diagrams .of Fig. 2. We sketch the proof 

of infrared finiteness for the sum of the cuts of diagram 2b (the 

Mercedes-Benz diagram). There are five distinct cut diagrams plus 

their complex conjugates and in each case, the infrared divergences 

come from various regions of the k and r integrations. It Is best 

to first perform the k. and r. integrations and then examine each 

term for divergences in the z and F integrations. The infrared 

divergences can be regulated by continuation from three to n-l 

spatial dimensions. For the cut diagrams with two real gluons, 

the energy integrations are trivial. For the other cut diagrams, 

either one or both of the k. and rO integrations must be done 

explicitly by closing the contour in, say, the lpwer half plane and 

enumerating the poles In that plane. 1 
~Divergences can arise from the following regions of $, f space. 

1) i; and ; + 0, 2) i: + 0 with f fixed, 3) G + 0 with g fixed, 

4) i: + ; + 0 with i; - f fixed, 5) 2 becoming parallel to ? with both 

vectors non-zero. The last kind of divergence arises only in 

theories with coupled massless fields. Each of these infrared 

divergences then cancel among the various terms independently of 

the quark phase space integration. The treatment of diagram 2a 

Is simpler since the contribution from the region k,, and r,, + 0 

vanishes due to the total antisymmetry of the trlgluon vertex ten- 

sor. We conclude that RAE is infrared finite to this order in the 

Yang-Mills theory. 
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The analvsis outlined here can be aDDlied to scatterinm Droblems 

as well. The scattering of a color averaged auark beam by an 

external color slnalet field followed bv color blind detection Is 

closely analogous to the Droduction Drocess discussed above. We 

have shown it to be infrared finite to order m4(M) (two loon cor- 

rections to the elastic amplitude and UD .to two undetected massless 

auanta in the final state). It should be Dossible to treat other 

scattering oroblems involvlna color sinalet sources and detectors 

in the same way12. 

We conclude with some comments to help put this work in persnective. 

1. Our result, being DertUrbatiVe, has nothing to do with re- 

normalization group considerations such as asvmototic freedom. RAE 
is infrared finite in perturbation theorv for both the asvmutotlcallv 

free Yang-Mills theorv and the non-asvmDtoticallv free Abelian model. 

However, the behavior of RAE to all orders in e(M) is surely quite 

different in the two cases. One auestion related to this all-orders 

behavior Is the denendence of R AE on the enermv resolution AE. In 

ordinary Quantum electrodvnamics, the factors of (10~ AR)" which 

annear in n'th order can be extracted into a multiDlicatlve exponential 

factor which then vanishes as a Dower of AE when AE+O. Does somethinm 

like this haDDen with couoled massless ffelds? It is probablv not too 

difficult to answer this ouestion in the Abelian model (model 1) 

because It becomes weakly coupled in the infrared limit. In the Yanm- 

Mills theorg, on the other hand, this Is a strone couolinm Droblem. 

2. To.summarize, our result Is a statement about the behavior 

of RAE order by order in g(pfl). Since the exact Infrared behavior of 

the Green's functions is unknown in the Yanm-Mills theorv, RAE has not 

been expressed in terms of an on-s,hell couulinp: constant. Thus, for - 
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examule,there is no immediate classical correspondence as in 

ouantum electrodvnamics. 

3. In two recent namers, Cornwall and Tiktonoulos have 

SuQQested that the Bloch-Nordsleck DroQram could fail for Yana-Mills 

theories resultinp: in a zero nroduction nrobabilltv bv a color sinnlet 

sourcel3: This sneculation Is based on a summation of leadine: 

loaarithmic corrections to each exclusive emission nrocess. Thus, 

there is no a prloricontradictlon with our result which is an order 

bv order statement. 
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Figure Captions 

Fig. 1. Abelian model three loop contributions to R,,"(q), con- 

taining coupled massless fields. 

Fig. 2. Yang-Mills three loop contributions to II ,,h) * 
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